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ABSTRACT

The MOS system is an integrated multicomputer system which was
designed to preserve the standard UNIX interface while providing com-
plete network transparency. This thesis measures and analyses the perfor-
mance of the internal mechanisms of the system, including all of the sys-
tem calls, interprocess communication mechanisms and process migra-
tion. Several distributed application programs, the most successful of
which show an a!most linear improvement in performance as the number
of processors increases, are also analyzed.
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Chapter 1
Introduction

Distributed systems provide transparent access to remote objects, e.g. files or programs, and

allow user applications to simultaneously utilize the processing power of all of a system's proces-

sors. For a distributed system, the performance of remote operations, e.g. remote procedure calls

or a memory mapping mechanism between local and remote machines, determines the feasibility

of the distributed system itself and the feasibility of other mechanisms. Measuring the perfor-

mance of a system's mechanisms has two benefits: it highlights the weak points of the system for

the system designers and it provides the data needed by users to predict the performance of appli-

cations which they want to run on the system. This thesis deals with measuring and analyzing the

kernel mechanisms of the M ^ AuinLXomputer operating system -and several application pro-

grams which run on MOS.

MOS [1-6] is a Multicomputer Operating System which integrates a cluster of loosely con-

nected computers into a single machine UNIX environment. The system uses decentralized

mechanisms to provide a network transparent file system, dynamic process migration and load

balancing. The kernel of MOS is divided into three parts: the upper kernel, the linker and the

lower kernel. The upper kernel provides users with the standard UNIX interface. The lower ker-

nel contains all of the routines which handle local resources. Eventually, the upper kernel calls

the relevant lower kernel procedure via the linker which determines whether the call can be exe-

cuted locally or needs to be sent to a remote machine. Remote system calls which need to return

data other than the return value use the funnel mechanism which maps memory from a local

machine to a remote one.

System calls define the basic interface between the user's programs and the operating sys-

tem. In MOS, system calls can be divided into three groups: system calls with no remote imple-

mentation, system calls with remote versions which use the funnel mechanism and system calls

with remote versions which do not use the funnel mechanism. In Chapter 3, benchmarks are used

to determine the slowdown associated with each remote kernel system call: computed as the

elapsed time required for the remote execution of the call divided by the elapsed time required for

the local execution. It should be noted that the design of the MOS kernel allows for certain sys-

tem calls to be executed locally regardless of the current position of the calling process. We

present results which show the weighted average (by frequency of the system calls) to be 240%.

The same technique was used by Leffler ct al and McKusick et al [7,8] to measure the perfor-

mance of system calls of Berkeley UNIX syscms and by Cabrera et al [9, 10] to analyze the
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network throughput of IO related system calls on a Berkeley UNIX system. While comparing

results gained on different machines is of dubious value, in Douglis and Ousterhout [11] the

measured slowdown of process related remote system calls in the Sprite system was approxi-

mately twice that of the corresponding MOS system call.

In Chapter 4, we measure the slowdown factor associated with the interprocess communi-

cation (JPC) related system calls. The cost of the IPC is a critical factor in determining the perfor-

mance of distributed applications. The IPC mechanisms used in MOS show a similar slowdown

factor to the general system calls. The measurements proved the importance of using a distri-

buted IPC mechanism: centralized mechanisms, like the current initial of AT&T System V mes-

sages, which store messages on one machine, create a serious I/0 bottleneck which hinders the

scalibility of-distributed applications.

A unique feature of MOS is its dynamic process migration by the automatic load balancing

mechanism. In Chapter 5, we describe the performance of the implementation of the funnel

mechanism since it is the basis of the process migration mechanism and then the speed of process

migration itself. The best result obtained showed the funnel throughput to be 164 Kbytes/second.

The results presented in [10] show the maximum network throughput over ethernet to be

188Kbytes/second with an unloaded VAX11P780, a processor almost twice the speed of the MOS

MC68010 based node, and an unloaded Ethernet.

In Chapter 6, the speedup factor of distributed applications is measured when run on the

MOS system. The speedup factor is computed to be the minimum run time the application

requires on a one processor system divided by the run time on an n processor system. An appli-

cation which does a large amount of 10 (each operation requiring a remote system call) is more

difficult to distribute since each of the system calls suffers a slowdown. On the other hand, an

application which does heavy computation, does not perform many system calls and does not

show a degradation in performance on a remote node. For example, an application which spends

9 seconds running in user mode and 1 second system time can expect to gain a speedup of at best

(9 / number of processors) + 2.4, where the measured slowdown of system calls is 240%. The

first application, a parallel version of the UNIX make, does a large amount of disk 1O as well as

computation. By distributing the temporary files created by each of its subtasks between the

working nodes at random, a speedup of 60% of the optimal was measured. The second applica-

tion is an distributed implementation of the Traveling Salesman Problem [12], a CPU bound

problem that does relatively little message passing. For all but the smallest instances of the prob-
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lem, a nearly linear speedup was obtained (the speedup with 7 machines being 88% of the

optimal).

This thesis is organized as follows. Chapter 2 describes general properties of distributed

systems and gives a overview of the kerrel structure of the MOS system. Each of chapters 3

through 5 describes the performance of one mechanism of the MOS system. Chapter 6 describes

the performance of two application programs and Chapter 7 draws conclusions.



Chapter 2
The MOS Multicomputer System

2.1. Introduction

An integrated multicomputer system is a collection of computers which run a single, homo-

geneous operating system and can communicate through a common network. The basic goal of

such systems is providing each computer access to non-local resources, such as files or remote

processing power. Some such systems, like Locus [131, are composed of heterogeneous

machines. The systems discussed in this paper are homogeneous systems in that all of the

machines (nodes) are required to have the same instruction sets. n this section, only systems

which support the UNIX interface are used for comparison.

2.2. Typical Features of Distributed UNIX Systems

The above definition of multicomputer systems is quite general and includes a multitude of

different types of systems. In practice, distributed systems can be identified as systems which

provide some subset of the features described in this section. Later chapters analyze the MOS

distributed operating system's implementation of these features.

Network file systems provide a system's users access to remote files and have become

increasingly popular in recent years. Most UNIX based distributed file systems provide user tran-

sparent access to remote files. That is, the user need not be aware of the location of a file as long

as he or she knows the UNIX path to the file which is a system wide identifier. In UNIX, the ker-

nel procedure namei maps a pathname to a unique file header, called an inode, which contains a

description of the file and its location. The namei procedure must be modified in a distributed

system to handle the remote file names. Some systems employ a universal super-root to tic the

various file systems into a single tree while others provide arbitrarily placed remote namespace

eicapes, which point to the inode of some directory on a remote machine. This tunis the standard

UNIX tree into a general network wide graph. For a more comprehensive discussion of network

file systems see [61.

Distributed systems have several mechanisms for allowing processes to communicate

across the network. Remote procedure calls (RPC's) are an extension of general procedure calls

which allow a process to execute certain procedures on a remote node. The advantage of a RPC

is its ease of use: no change in programming style is required, except for the change in syntax
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required to specify where to run the procedure.

Message passing, the second mechanism, is a more radical break from standard program-

ming in that messages allow multiple, concurrent threads of execution. Programmers are pro-

vided with a set of procedures to send and receive messages. Message passing is a central

mechanism in server/client based systems and has a significant influence on the performance of

such systems [14]. Both of thc above mechanisms provide some access to the processing capabil-

ities of remote nodes.

The throughput of a distributed system, i.e. the number of job completions in a given period

of time, can be improved by load balancing. Load balancing algorithms can be divided into two

major classes: static algorithms and dynamic algorithms. Static load balancing algorithms assign

a new process to a processor upon its creation. The process continues executing on this node

regardless of how the load distribution changes during is life time. Dynamic load balancing algo-

rithms allow a process to migrate to a less loaded node if the distribution of the work load

changes during the execution of the process. In load balancing systems, the performance of the

various distributed mechanisms is taken into consideration when deciding whether to migrate a

process from its original node. A detailed survey of various load balancing schemes is given in

[151.

2.3. The MOS System

The MOS system [1-6] is a loosely coupled, integrated multicomputer system which was

designed to preserve the standard UNIX interface while providing complete network tran-

sparency. Each node is completely autonomous and supports the classic UNIX interface. The

amount of memory, processor speed and the number and type of peripherals may vary from one

node to the next. The MOS configuration that was used in the current work is a collection of

Cadmus QU68000's which are based on the Motorola MC68010 processor and are connected by

Pronet, a 10 Mbits/second token passing ring. In addition, each machine has one megabtye of

main memory and an 80 megabyte disk.

2.3.1. MOS System Architecture

The kernel of the MOS oprating system is divided into three parts: the lower kernel, the

link er and the upper kernel. The lower kernel contains device drivers for the local node and all of

the routines which access file and process structures. It is tightly coupled to the local node and

can access only local objects or objects that have migrated to the local node. The upper kernel
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provides the standard UNIX system call interface. When a process executes a system call, the

upper kernel performs the preliminary processing of the parameters, e.g. calling namei to parse a

path name into a universal inode or checking that the user has permission to access a certain

object. Eventually, the upper kernel calls the relevant remote kernel procedure (or scall) to com-

plete the service. For example, the call Sproc name( machine id, paramrlist ) invokes the

remote kernel procedure "procname" with the parameters specified in "paramlist" on

machine "machineid".

At this point, the Scall is passed to the linker which decomposes the scall into the procedure

name and the parameter list. The linker examines the parameters of the call to determine if the

call needs to be execuL.ed remotely. If it is remote, the linker encapsulates the call into a message

and sends the message over the network. If the call can be executed locally, the linker invokes

the local lower kernel procedure directly. On the target machine, an ambassador process, a light-

weight kernel process, executes the appropriate lower kernel procedure for the calling process.

The result of the system call is then encapsulated into another message and returned to the calling

node. Remote system calls which need to transmit large amounts of data in addition to the return

value of the RPC use the MOS funnel mechanism to copy the data from the memory space of

one machine to another. The linker handles the implementation of funnels by breaking up large

blocks of data into message size pieces at one end, sending the messages over the network and

then reunifying the data in the proper order on the target machine. The data is then copied by the

linker of the receiving node to the specified memory address.

For example, for the read system call, the upper kernel sets up an input funnel on the local

machine before calling the Sread remote system call. If the system call accesses a remote file, the

linker routes the call to the target machine and an ambassador process there calls the appropriate

kernel procedure for reading a file. As each logical file block is read. the data is placed into the

remote end of the funnel and passed back to the initiating machine's linker. After the call com-

pletes, the returned status of the system call is encapsulated by the remote linker and passed back

to the calling machine.

2.3.2. The MOS File System

The MOS file system is based on the standard UNIX file system tree. The original MOS

file system used a super root, "/...", as a network wide root. When addressing a file on a remote

machine, the user prefixes the super root to the machine name and then adds the usual UNIX

path. For example, "/.../m2/etc/passwd" is the absolute path name for the password file on
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machine number two. In the version of MOS measured in this work, a new scheme uses a special

file type which indicates the remote machine number in its inode. When such an inodc is

accessed by the kernel, the inode of the special file is automatically replaced with the inode of the

root directory of the remoLe node indicated. For example, if the special fil.e "'usr/syslemrs"bert"

is created as a remote escape to the file system on machine two, the path

"/usr/systemslbertletc/passwd" refers to the password file on machine two. Note that this

change climin3tes the need for special, non-standarl UNIX pathnamc syntax. Also, it allbws the

MOS file system to have arbitrarily placed links between nodes.

In MOS, the inode of an oen file is held by the site at which the file resides. All remote

opens are returned a universal pointer to the inodc. a universal inode, which is used for future file

accesses. A 'garbage collection algorithmi is used to clcau up allocated inode structures in the case

of a failure of the host node or of the calling node.

In order to allow for dynamic reconfiguration of the system, e.g. the removing or adding of

new machines at any given point in time, each remote access generates a new remote kernel call

which returns a special error code if the node is currently unreachable. The system does not

require any special action to incorporate a new node: upon the first remote call to the newly

joined node, the system simply sends the message to it in the usual way and the connection is

created dynamically.

2.3.3. MOS Load Balancing

In MOS, load balancing is carried out by dynamic process migration [2]. As a result of the

syqtcm architecture, a MOS process is not sensitive to its physical location: system calls which

access resources that are not located on its current node are automatically forwarded by the linker

to the remote node. The case with which processes may migrate in the system allows dynamic

load balancing to be implemented. In MOS, each node sends its own local load cLinaie to a set

of randomly selected nodes every fixed amount of time (every second in the current implementa-

-ov). Load estimates received from other processors are kept in a load vector and are "'iged" to

reflect Oicir decreasing rclcvar.cy. Every processor may refuse to accept a migrating process if it

so desires and each piocc;sor accepts at most one incoming process during one load balancing

,cjc. 7-- oad adancirg algoriim may migrate a process which has used at least I second of

CPU tm, e ofn tile local processor. Processes which have a history of "forking" new processes are

given prcfercnce by the algorithm which chooses a process for migration. Also, processes with a

history of I/O operations to some specific remote node ire considered for migration to that node.
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2.4. Rela xcd Systems

Distributed UNIX systems, in the broadest sense of the definition given at this chapter, are

quite popular. In order to reduce the clarify the relative merits and weaknesses of MOS, the fol-

lowing gives a brief description of a handful of the more widely known systems which have some

aspects in common with MOS.

The Masscomp RTU system provides users with a real time variation of UNIX [16]. It has

a distributed file system which was built on a transaction based reliable data protocol. The

Masscomp approach to the distributed file system is quite similar to the MOS approach: an rinode

is used as a universal pointer to the inode of an allocated file. The RTU kernel, like the MOS ker-

nel, routes standard UNIX system calls to a remote host when necessary. The system was not

designed to allow process migration or load balancing.

The SUN distributed system, SUNOS, is built around a general purpose remote procedure

call mechanism [17,18]. Unlike MOS, where remote procedure calls are made only by the ker-

nel, processes have access to the remote procedure mechanism. The SUN Network File System,

or NFS, is implemented through use of kernel level RPC calls. NFS provides transparent access

to remote file systems which may be "mounted" at arbitrary points in the file system tree.

SUNOS incorporates heterogeneous machines into a distributed file system. As a result, it can

not support process migration and load balancing.

In Sprite [I l], as in MOS, processes can migrate dynamically. Each process has a unique

home node which handles all location sensitive system calls, e.g. calls which return the current

time. The home of a process is always the same as its parent process which means that each node

must handle such system calls for its original processes and all of their descendents. As in the

other systems mentioned, remote system calls arc implemented through use of a remote pro-

cedure call mechanism. As in MOS, the RPC is a kernel to kernel mechanism. The RPC facility

has been used to construct a transparent distributed file system. Universal pointers to open files

are migrated with the process from onc node to another. has a significant influence on the perfor-

mance of the system.



Chapter 3
Performance of Remote System Calls

3.1. Introduction

System calls define the basic interface between the user and the operating system. The

overhead associated with the remote execution of system calls has a significant influence on the

performance of the system. In MOS, system calls can be divided into three groups: system calls

with no remote implementation, system calls with scall versions which use the funnel mechanism

and system calls with scall versions which do not use the funnel mechanism. After a brief

description of the measurement techniques used, the chapter goes on to describe the performance

of each of the types of system calls and the overall influence of remote system calls on a the per-

formance of processes.

3.2. Measurement Technique

The remote system calls overhead was measured by running a set of benchmarking pro-

grams. Each benchmark measures the elapsed time required for local and remote execution of a

system call that has a remote implementation. Each system call is executed 10,000 times on

objects located on the local node and 10,000 times on remote objects. The system calls measured

are all part of the standard UNIX interface. Some system calls were not measured, such as mount

and umount, since these operations are relatively infrequent and the slowdown can be extrapo-

lated from the results for similar system calls that were measured. The measurements were done

when the remote and the local nodes were running in single user mode to reduce interference

from uninvolved processes. As a side note, several system calls were carried out with up to

100,000 iterations. However, as reported in a related work by [9], the times do not change

significantly as the number of iterations increase, so all measurements are based on the average

time of 10,000 calls.

System Calls without a Scall Version

Several system calls in the MOS system have no need of a corresponding remote version

since the call does not require access to objects at a location dependent site. For example, the

standard "time" UNIX system call returns the current time. Since the time is synchronized

between active MOS sites, this system call can always be handled by the kernel where the process

is currently running. As a result, no performance penalty is paid for calling such a system call
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regardless of the location of the process.

Systcm Calls with Funnels

Read and write, UNIX's inputioutput interface, are two of the most frequently used system

calls. The scall versions use funnels to transfer the data to be read or written to and from a

remote machine. In order to execute a single remote read system call, MOS does the following:

The upper kernel routine, read, is called. It does elementary checking of the parameters,

calls a kernel procedure which maps its file descriptor into a universal inode pointer, sets up

its end of an input funnel and then passes the universal inode pointer and the other parame-

ters to the local linker.

The linker checks to see where the call needs to be executed. If it is a remote call, the linker

encapsulates the parameters into a message and sends the message over the network to the

target machine.

On the remote machine, an ambassador process receives the message, sets up the remote

end of the funnel and then executes the corresponding lower kernel procedure.

A lower kernel procedure (readl) converts the universal inode pointer into a local inode and

passes the inode to another lower kernel procedure, readi, which does the actual reading of

the file.

* Until the requested amount has been read, readi reads one logical block at a time from the

file and places the block in the funnel which causes the linker to encapsulate the block into a

message and send the message over the network to the requesting node.

* The lower kernel finishes its work and passes control back to the ambassador. The ambas-

sador encapsulates the return status of the call into a message and sends the message back to

the requesting machine's linker.

• The linker and the upper kernel finish their part of the work on the requesting machine and

pass the result back to the user.

In summary, the remote read causes the following messages to be sent over the network:

one to initiate the call, one to return the exit status and one funnel message for each logical block

read from the file. Due to the unreliable nature of the network, each of the messages sent also

incurs ihe cost of an acknowledgement.

The results presented in Table 3.1 shows the cost of sequentially reading a regular file,

using different buffer sizes. The second and third columns show the measured results of local and
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remote execution of the system call. The last column shows the slowdown factor which is

obtained by dividing the remote execution time by the local executiun time. This figure shows,

as one would expect, that larger read requests suffer less when executed remotely.

Size Read Elapsed Time (ms) Elapsed Time(ms) Slowdown
for Local Read for Remote Read Ratio

2 bytes 2.20 10.00 4.55

8 bytes 2.33 10.40 4.46

32 bytes 2.40 10.60 4.41
128 bytes 3.20 11.80 3.69

512 bytes 7.20 15.80 2.19

1024 bytes 9.25 20.50 2.22

2048 bytes 14.23 37.48 2.63

'fable 3.1 - MOS Read System Call

Note that the logical block size of the MOS file system is 1024 bytes. The above table

shows that the elapsed time required to read one logical block from a remote file is approximately

11 milliseconds more than the time required to write one logical block to a local file, a slowdown

of 2.22. Since the linker is forced to send at two packets for a 2048 byte buffer, the overhead

increases to approximately 23 milliseconds and the slowdown factor increases to 2.63. The

results for the write system call, not shown here, are similar with a slowdown ratio of 2.55 for a

1024 byte remote write.

In Table 3.2, a more detailed look at the read system call is presented. The measured exe-

cution times and the communication overhead incurred by the use of the scall mechanism for the

read system call are shown. The second and fifth columns show the measured times for the local

and rcmote exccution of read.
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Buffer Elapsed Time (ms) Local Remote Elapsed Time (ms)
Size for Local Read RPC Overhead RPC Overhead for Remote Read

2 bytes 2.20 6.65 6.32 10.00

8 bytes 2.33 6.68 6.24 10.40

32 bytes 2.40 6.84 6.46 10.60

128 bytes 3.20 7.13 6.11 11.80

512 bytes 7.20 8.15 4.26 15.80

1024 bytes 9.25 9.48 4.83 20.50

1536 bytes 14.04 12.93 7.04 30.57

2048 bytes 14.23 15.23 9.54 37.48

Table 3.2 - Breakdown of Remote Read

The local and remote communication overhead times were measured by using two "load

sink" processes. First, the amount of work performed by the load sink process was measured

during a fixed time interval on each of the unloaded nodes. This was compared to the amount

done while the benchmark was running. The cost incurred by each node was calculated to be the

amount of milliseconds "stolen" from the load sink processes during the running of the bench-

mark. The remote RPC overhead is the amount incurred by the remote node minus the amount of

time required to perform the actual system call. Therefore, in order to get an estimate of the

remote communication overhead, the amount of time required to perform a local read system call

was subtracted from the total measured amount. The result is slightly lower than the actual over-

head since the processing of the upper kernel portion of the system call, done by the local node, is

also subtracted from the remote cost.

The local node's overhead in a remote read involves executing the upper kernel portion of

the read system call and the work done by its linker in initiating and managing the local end of

the message passing. Similarly, the remote linker is responsible for most of the overhead paid by

the remote node. The local overhead is quite similar to the remote overhead. The minimum

elapsed time required for a remote scall is the sum of the Maximum( local overhead, remote over-

head ) and the local execution time. On the other hand, if the two processors execute their part of

the overhead sequentially, the worst possible case, the remote execution elapsed time would be

the sum of the three. In Table 3.3, the columns show the minimum expected remote execution
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time, the measured (elapsed) time required for execution of the scall and the worst expected exe-

cution time. The percentage of the parallelism achieved in handling the remote and local por-

tions of the scall is computed from these.

Buffer Minimum Measured Remote Maximum Percent Parallelism
Size Predicted Time Time Predicted Time Achieved

2 bytes 8.52 10.00 15.17 29.7 J
8 bytes 8.57 10.40 15.25 24.2

32 bytes 8.86 10.60 15.70 25.5

128 bytes 9.31 11.80 16.44 12.2

512 bytes 11.46 15.80 19.61 0

1024 bytes 14.08 20.50 23.56 0

1536 bytes 21.08 30.57 34.01 0

2048 bytes 23.77 37.48 39.00 0

Table 3.3 - Remote Read: Parallelism Achieved

There are several ways to reduce the overhead involved. First, the percentage of work done

concurrently by the two machines involved should be increased as much as possible. This can be

done by using the initial message packet sent over the network to "piggyback" some part of the

data that needs to be sent. In this way, the remote linker can start transferring data immediately

after receiving the request message. Another possibility is to lock th. calling process in memory

so that the networking hardware can transfer the data directly to the user memory space.

Although the current MOS implementation does not incorporate these features since they require

a greater consumption of mair memory, the newest MOS system does incorporate similar over-

hLad reducing measures. Additional reductions in overhead can be achieved by using hardware

which provides a reliable deivery medium with checksunis and automatic acknowledgements,

thu; relieving the processor of the burden.

An example of a system call that usesfuannels is the exec call which uses funnels to transfer

;4n executable tile from a remote machine. In Table 3.4, the first job executed by the exec call has

r'o Alaca rcgion aad exits immedi.tely. This demonstrates that tle amount of time required to set

up a new process is quilc substantial. The second job has a data region the size of the standard

UNIX text dtor, vi, and also cxits immcdiately. As the table shows, the overhead associated

with the remote exec call is quite low.



- 14-

Size of Elapsed Time (ms) Elapsed Time(ms) Slowdown
Process execed for Local Execution for Remote Execution Ratio

1,586 bytes 100.00 137.00 1.37

257,586 bytes 257.00 275.00 1.07

Table 3.4 - MOS Exec System Call

System Calls without Funnels

Most system calls involve only the transfer of the parameters and the return of the result, so

that no use is made of the funnel mechanism. For example, the namei kernel routine performs

one remote procedure call for each remote segment of a pathname. As a result, remote system

calls like access and stat which spend a large portion of their execution time in namei pay heavily

for remote execution, especially for files with long pathnames. In general, "short" system calls

pay a heavier penalty in terms of percentages since the overhead is a substantial part of their run-

time. Thus, short system calls like Iseek, which simply changes the value of the offset pointer in

a file descriptor structure, also pay a heavy penalty for remote execution. The "heavier" system

calls such as openiclose show the most favorable performance since the time required for local

execution of the calls is already substantial. An extreme example of a heavy system call is sync

which flushes the buffer cache associated with a certain device to disk.

Table 3.5 presents the measured results for commonly used system calls. Four system calls

were measured in pairs: open and close were one pair and link and unlink were the second. In the

first case, the two calls were paired due to the limitation on the number of open files allowed per

process. In the second case, creating several thousand links, although possible, causes a severe

degradation in performance as the number of links increase due to the linear search that must be

performed on a directory. In both cases, the paired calls are often used together so the cumulative

results arc relevant for normal programming.
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Name Elapsed Time (ms) Elapsed Time(ms) Slowdown
for Local Execution for Remote Execution Ratio

access 14.10 41.05 2.91

chmod 29.24 71.30 2.44

chown 26.26 71.26 2.71

I dup 2.34 11.34 4.84

ioctl 1.66 9.62 5.80

link/unlink 66.70 133.95 2.01

]seek 1.15 5.72 4.97

open/close 37.00 83.00 2.24

slat 14.8 43.5 2.94

sync 12.35 16.35 1.32

Table 3.5 - MOS File Related System Calls

Table 3.6 presents the results for process related system calls. As noted for the file system

related calls, the "lighter" system calls for processes are also heavily penalized in remote execu-

tion. Note that many process related system calls, including calls like fork, never involve remote

resources and thus have no scall versions.

Name Elapsed Time (ms) Elapsed Tirne(ms) Slowdown
for Local Execution for Remote Execution Ratio

chdir 24.12 63.38 2.71

chroot 9.55 23.95 2.51

kidl ____ 4.10 7.70 1.88

Table 3.6 - MOS Process Related System Calls

3.3. Overall Performance of Remote System Calls

A reasonable estimate of the overall penalty that a process pays while executing remotely is

t veighted average: the siowdown iactor mcastired for each sys~crn call is multiplied by its rela-

tive use in a standard UNIX environment. The numbers used in Table 3.7 are based on statistics

gathered in [I for a standard 4.3bsd UNIX system for the most frequent system calls.
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Name Percentage of Calls Has ScaUl Version Effect (Percent * Slowdown)

read (lk bytes) 41.0 yes 91.0

close 17.5 yes 39.2

open 16.3 yes 36.5

write (lk bytes) 15.3 yes 39.0

fork 2.7 no 2.7

exit 2.7 no 2.7

exec 2.2 yes 3.0

create 1.2 yes 1.6

Total 98.9 240 percent

Table 3.7 - System Call Weighted Average

Since each process has a unique mix of system calls, the above result provides only a rough

prediction of the system time slowdown. Many processes spend a major part of their execution

time running in user mode which does not suffer a slowdown due to remote execution. Chapter 6

shows benchmark results from such applications that show an almost linear speedup.



Chapter 4
Interprocess Communication Mechanisms

4.1. Introduction

In order to utiliLc the processing power of a distributed system, a distributed application is

broken into several subtasks which can run in parallel on different machines. On a UNIX system,

such distributed applications have several drawbacks. The first draA 'cack is the "heavy" nature

of a UNIX process which typically takes several hundred milliseconds to create. One way to

avoid this cost is to circumvent the UNIX process creation and handling mechanisms altogether

by using light weight processes as is done in the MOS Distributed Lightweight Processes project

[191. Secondly, in addition to the time required for the computation of the task, each of a distri-

buted application's subtasks must use some form of interprocess communication (IPC) mechan-

ism to communicate with the other processes working on a given task. The overhead associated

with IPC is a critical factor in determining the performance of a distributed application [14]. For

example, if the amount of communication between processes is zero, as is the case with unrelated

user processes on a general purpose system, distributed systems can gain impressive speedups.

On the other hand, if a group of processes spend most of their time in communication and little

time in computation, using a distributed approach can actually increase the overall time needed

for computation.

In [20], Watson defines the following desired characteristics for a distributed system's IPC

service:

" No apr.on restrictions should be placed on which processes can communicate with which

others. Processes should see the same IPC interface whether they are communicating with

local or remote processes. Local host or network idioyncrasies should be largely or com-

pletely hidden.

" Symmetric communication should be supported between equal and autonomous partners.

Each partner must have full control over its interaction with the other, deciding when it is

wili)g to communicate- how much of its resources it is willing to allocate to a given

ccawersation and -,vbht events it is willing to be blocked on until they occur.

Efficient transaction and stream criented styl.bs of communication should be supported.

-No restrictions should te placed on the lengt!hs or contents of the basic _,..iagfd nes-



-18-

sage.

The basic IPC service should not limit or bias the direction of the higher level programming

or application IPC may take.

In the MOS system, these subtasks are handled by separate processes which axt spawned

with the fork system call. The load balancing mechanism automatically distributes the processes

between the available nodes which provides real parallel execution. This chapter analyzes the

cost of two standard UNIX IPC mechanisms that the MOS system provides: pipes and AT&T's

System V2 messages.

4.2. The UNIX Pipe Mechanism

In UNIX, a pipe is used to transfer data between related processes in a first-in-first-out

manner (FIFO) [21]. Pipes are implemented as a pair of file descriptors which are returned by the

pipe system call. All transfer of data to and from a pipe is done with the standard read and write

system calls, regardless of the location of the communicating process. Writing to one of the file

descriptors puts data into the pipe while reading from the other takes data out. Since UNIX

mechanisms only allow sharing of open file descriptors between a process which opens the pipe

and its children or between the children of such a process, the standard UNIX pipe mechanism

does not provide a general purpose IPC mechanism. Pipes are finite: processes which try to write

too much data (over 2048 bytes in MOS) into a pipe must block until the pipe has been emptied

by a reader process taking out data from the other end. Since processes which try to read from an

empty pipe are blocked until a writer process fills the pipes, the pipe mechanism can be used to

synchronize processes. At the lowest level, pipes are built as a special type of file which means

that it uses the standard lower kernel mechanisms for manipulating data buffers and inodes. In

spite of their limitations, pipes are the only IPC mechanism that is available on every type of

UNIX system. They provide several of Watson's [20] desired features in that the messages

passed between processes are not restricted in size or content and the interface routines are not

location sensitive. Pipes are quite useful in distributed applications since a parent process is typi-

cally used to spawn subtask proccsses, colect and then process the results of the subtasks' com-

putations into a final answer.

4.3. The MOS Pipe Mechanism

The methods described in Chapter 3 to measure system calls were used to measure the per-

formance of the pipe mechanism. The following table shows the elapsed time and the associated
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slowdown for sending messages of size bytes. An additional pipe was used to synchronize the

reader and writer processes. The measured interval starts with the writer process sending the first

message and ends when the receiving process reads the last message.

Size Elapsed Time (ms) Elapsed Time(ms) Slowdown
for Local Write for Remote Write Ratio

2 bytes 4.84 11.09 2.29 I
64 bytes 5.03 11.42 2.27

128 bytes 4.82 11.95 2.48

512 bytes 5.94 14.81 2.49

1024 bytes 6.55 18.47 2.82

[2048bytes 9.94 28.58 j .88

Table 4.1 - MOS Pipe Mechanism

The amount of time required to pass messages between two local processes, in the worst

case, should be the sum of the time required to write the same size buffer to a regular file and the

time required to read that size buffer from a file. For the smaller messages, the results are quite

close to this worst case scenario since the write process writes uninterrupted until it fills the pipe.

A context switch then occurs and then the reader process empties the pipe and the cycle starts

again. Writing to a pipe proves itself to be more efficient than writing to a file as the size of the

message increases, since the pipe mechanism does not write data to the disk or deal with indirect

blocks which UNIX uses to implement large files. This result is shown in Table 4.2.

The remote test case involves a local writer process and a remote reader process. Both

processes communicate through a pipe which is created on the writer process' machine. The

worst performance would occur whcn both processes execute serially: the elapsed time would be

equal to the sum of the required to perform a local write and a remote read (as shown in Chapter

3).
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Size Elapsed Time (ms) Elapsed Time(ms) Sum Elapsed Time(ms)
for Local Write for Local Read for Local Pipe

2 bytes 2.22 2.22 4.44 4.84

128 bytes 3.33 3.2 6.53 4.82

512 bytes 5.83 7.2 13.03 5.94

1024 bytes 8.92 9.25 18.17 6.55
2 48bytes -16.5 14.23 30.73 9.94

Table 4.2 - Comparison of Local Pipe and File I/O

As shown in Table 4.3, the remote pipe is considerably faster than this for all messages greater

than two bytes in size. In fact, the performance of the pipe mechanism in the remote case is actu-

ally better than that of an equivalent read from a remote file in most of the cases.

Size Elapsed Time(ms) Elapsed Time(ms) Sum Elapsed Time(ms)
Local Write Remote Read Remote Pipe

2 bytes 2.22 10.00 12.22 11.09

128 bytes 3.33 11.80 15.13 11.95

512 bytes 5.83 15.80 21.63 14.81

1024 bytes 8.92 20.50 29.42 18.47

1 t2048 bytes 16.50 37.48 53.98 28.58

Table 4.3 - Comparison of Remote Pipe and File I/O

The MOS kernel treats read and write calls for pipes the same way it handles calls involv-

ing regular files. When the linker identifics a remote pipe, the data is encapsulated by the linker

and sent through a funnel to the node which hosts the pipe. The gain in performance over I/O to a

regular file is explained by the elimination of disk I/O: since the size of a pipe is limited, all of

the data blocks are always in the buffer cache of the local node.

4.4 The Messages IPC Mechanism

A newer IPC mechanism, messages, is a standard feature of AT&T's UNIX System V.2

systems (see [21] for a detailed explanation). System V messages are a general IPC mechanism:

any two processes can use them to communicate provided they know the key which uniquely
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identifies a queue of messages. The amount of data held in a certain message queue is limited by

a system defined constant: sending a message to a full queue causes the writer process to receive

an error code unless it specifically requests to sleep on the event of a reader process emptying the

queue. In this way, the regular interface rouLines can remain location independent. Since a

reader process has the option of waiting for an empty message queue to receive data, the message

mechanism can also be used to synchronize processes. In order to allow out of band messages,

messages are tagged with npes and processes can send or read messages selectively from a given

message queue according to type.

4.5. MOS Implementation of Messages

The MOS implementation of the messages mechanism is similar to the AT&T version. In

MOS, each of the message interface routines maps into a single sy tcrn call entry point. The

parameters of the call are examined to deternine which of the routines was called and which

node is the home node of the message queue being used. The linker thens sets up a funnel for

calls which have message data to transfer and calls the specific routine with its parameters on the

host machine of the message queue. The specific routines executes and places any data into the

funnel. Since the maximum size of the data is limited to a system defined maximum, the body of

a message can always be passed through the funnel in one packet. A message queue can be

migrated from the node of its creation to another machine by use of the rnsgctl with a MOS

specific argument.

Size Elapsed Time (ms) Elapsed Time(ms) Slowdown
for Local Write for Remote Write Ratio

2 bytes 5.18 11.85 2.29

:128 bytes 6.49 18.41 1 2.84

512 bytes 10.54 21.06 - 2.00

1024 bytes 1 15.97 27.43 [ 1.72

2048 bytes 2 0.4 5 4o.42 1.76

Table 4.4 - MOS Msg Mechanism

I:n MfS, as shown in Table 4.4, messages are a heavier mechanism than pipes. The period

measu;cd starts %hcn the sending process starts sending and ends when the receiving process

receives the last message. As with the "heavy" system calls measured in Chapter 3, the message



- 22 -

mechanism's slowdown factor decreases as the size of the message increases. The slowness of

the mechanism, almost twice as slow as the pipe mechanism, is offset by the increase in flexibil-

ity and sophistication that is provides. While the performance of the mechanism may be

improved by eliminating memory copies from user space to kernel space, serious performance

improvements in a general IPC mechanism like System V messages can only be achieved by the

use of dedicated message sending hardware or by the use of a dedicated IPC coprocessor as was

done in [22].



Chapter 5
Networking and Process Migration

5.1. Introduction

Dynamic process migration is one of the unique features of MOS. The MOS load balancing

algorithms [2] use the dynamic migration mechanism to evenly redistribute processes from over-

loaded to less loaded machines. Distributed applications, like those described in greater detail in

Chapter 6, simply create several subprocesses with the standard UNIX fork mechanism and the

load balancing mechanism sees to the even distribution of the processes throughout the system.

This chapter describes the performance of the funnel mechanism and then the speed of process

migration.

5.2. MOS Networking Mechanisms

In any distributed system, performance is highly dependent on the speed of ie physical net-

work and the networking protocols implemented. In MOS, the user has no explicit access to the

network. The linker uses the network to implement the following functions: process migration,

funnels and remote kernel procedure calls. The performance of the remote kernel procedure calls

was described in detail in Chapter 3.

Each of the mechanisms above has a separate implementation in the linker which handles

network access. At the level of the linker, the data that needs to be transferred is broken into the

appropriate sized blocks (the current implementation uses 1.5 Kbyte packets). The data is encap-

sijated into a message )f the appropriate type, e.g. input/output funrnel, various types of process

data or sca/i. The separate implementations mean that there is a certain amount of duplication of

code in the linker, but allows the handling of the networking to be tailored for the best perfor-

mance of each type of data.

T"ie lowest level of the data transfer is handled by a specific hardware driver, in our case the

driver for the Pronet hardv'are. The Pronct driver is responsible for sending and receiving ack-

nowlcdgemcnts for :he messages and guarantees reliable delivery of the messages. Again, the

syst2o i:. tado-ed to incre4c pcrfonnance by usi-g busy waits for small packet sizes and DMA
for i;gr.r p: ckcts.

In gnera!, all of the implementations perfoim the following four steps to transmit data on

tile network:
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" A memory to memory copy is used to transfer user data from the user address space to the

kernel space.

" The data and other message related data such as the message headers are copied into the

Pronet hardware's physical memory buffer by a busy wait or a DMA transfer.

" A check sum is performed on the packet.

" The Pronet driver transmits the package over the network.

The reverse process is used by the receiving machine to copy the data from the remote

machine to the local user dat3 area. In sum, the optimal transfer rate can be roughly calculated as

the sum of two memory to memory copic two DMA copies, two check sums and the physical

transmission time over the network. In addition, the amount of time in the upper kernel, context

switching and the time required to prepare and send the packet that is required by the linker and

the Pronet driver also have a considerable impact on the throughput. The speed of the physical

network is determined by the hardware used: the Pronct token passing ring has a throughput of 10

Mbit/second (1,250 Kbytes/second ). The following sections attempt to measure the effect that

each of the other factors has on the network throughput.

5.3. The Funnel Mechanism

The funnel mechanism typifies the network related mechanisms. Therefore, analysis of the

networking protocols centers on measurements of the data throughput of the funnel mechanism.

For the system call read, an input data funnel is created by the upper kernel portion of the

read call. The linker may also create a new funnel before migrating a process, for example. After

the funnel his been set up, the kernel uses a linker procedure call to send the data to a waiting

light weight kernel process, an ambassador, which handles th,. .emote end of the transaction.

The following table shows two of the desired measures: the time required for a local

memory to memory copy and the throughput of an input funnel. Both cases show the measured

throughput of the read system call while reading the MOS pseudo-device, /dev/fun which simply

cop:cs th,. requested number of bytes from an array of rull characters into the funnel. In the local

case, the linker implementation of the funnel simply performs a memory to memory copy of the

data. In the remote case, the data is broken into packets of the size that can be sent over the net-

work a-id then sent over the network. The amount of time spent in setting up the system call

should be subtracted from the measured times, e.g. starting with the time that the user level call to

read occurs up to the time that the linker starts sending data. Since it is not possible to measure
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this period exactly, the same measurements were taken with all of the calls to the linker

"shorted" so that the upper level routines alone are called. Using this figure, the throughput at

the level of the linker can be computed and is given in the fourth row of Table 5.1. A large

30.000 byte buffer size is read from the remote pseudo-file in order to amortize the time spent in

the upper kernel between a large number of bytes.

Operation Throughput (Kbytes/sec)
Local Memory to Memory Copy 1,163
Network Funnel Throughput 112
Process Migration Throughput 114.77
Network Funnel Throughput w/o Upper Kernel 115.9

Network Funnel Throughput w/o Checksum 164

Table 5.1 - Network Throughput

As the Table 5.1 also shows, local memory to memory copies are an order of magnitude

faster than a network read. The throughput over the network was 112 Kbytes/second. The last

row shows that compensating for the time spent in the upper kernel does not have a significant

impact on the throughput, in fact it accounts for only 3 percent of the time spent in the transac-

tion.

One attempt to improve the throughput involved removing the Pronet driver's checksum

which is done on every message sent. Although the current network hardware requires that the

error checking be done in software, future generations of hardware will be able to do this by

themselves. An added advantage of not doing a checksum is a reduction in the number of mes-

sage queues maintained by the Pronet driver (by one). Without the checksum, throughput was

increased to 164 Kbytes/second, an increase of 46 percent. At this rate, a two machine transac-

tion utilizes 13.12% of the Pronet's maximum bandwidth.

5.4. Process Migration

The process migration mechanism is built upon the remote kernel procedure call mechan-

ism and the funnel mechanism. Remote procedure calls are used to request that a new procedure

entry is set up at the remote site and to start execution of the migrated process on the remote

machine after the migration completes. Funnels are used to transfer the procedure's text, data

and stack regions. Not Rurprisingly, the throughput of process migration is closely tied to the per-
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formance of the funnel mechanism: the measured throughput is 114.77 Kbyte /second which is

slightly better than that of the transfer rate of the funnel mechanism. This figure is an important

parameter of the load balancing mechanism: the time it takes to migrate a process is taken into

account when considering the possible benefits of migration.



Chapter 6
Distributed Applications

6.1. Introduction

The bottom line of performance for a distributed system is the performance of the distri-

buted applications that run on the s)stem. In the previous chapters, the slowdown associated with

the various aspects of MOS were measured. In this chapter, the speedup of various applications

is measured when they are run on the MOS system. The speedup of a distributed program is

computed as the amount of time te application uses on a one processor system divided by the

amount of time required on a multi-processor system. In the optimal case, a distributed applica-

tion will have a linear speedup with an increasing number of processors, that is the application

will run k times faster on a k-processor system than on a I processor system.

In MOS, applications benefit more or less from a multi-processor configuration depending

on their nature. This chapter analyzes the performance of applications which are mixed I/O and

CPU bound and almost pure CPU bound jobs.

6.2. Parallel Make

Make is a standard UNIX utility which is used to compile and maintain software systems.

Fcr large programs, make uses a makefile which lists the source files and the dependencies for

each source file, how to compile the source file into an object file and how to link and load the

Fobject files. When make is run, it reads the makefile, generates the dependency tree and then

!f' rks a child prccess which executes the next unfulfilled goal, for example the compilation of the

cxt source file of a software package.

The parallel version of make which runs on MOS, which allows a user to specify (in the

makefile) which of a goal's dependencies may be prepared in parallel and the number of child

processes which should be allowed to run concurrently at any one time. Each of the child

pro,;esses runs either the C compiler, cc, the assembler, as, or the link-loader, Id. Most of the

,ubgoals use the C compilcr, so a short description of the compiler is justified.

ihe C compiler is a four phase compiler. Each instance of the program cc forks to create

[Nir ,:hia'! processes, each of which runs one of the four phases of the compilation. Each stage

writes its results into a temporary file in the /trnp directory. In new versions of the C compiler,

pipr's are used in place of the temporary files to transfer data between the different subprocesses
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that execute the various phases of compilation. Each of the phases of the compilation work in

parallel to a limited extent.

The parallel make was used to compile the kernel of the MOS system which contains

approximately 25,000 lines of code in 60 different source files. Parallel make represents a mixed

IO/CPU bound job since each of the four phases of the compilation reads one source file, com-

putes its stage of the compilation and writes its result into a new file or the final object file. The

parallel version has two serial phases: the generation of the dependencies and the linking and

loading of the compiled object files.

Single Machine Compilation

The first run of the parallel make was run on a single MOS node which did not allow

processes to migrate. In Table 6.1 we give results that show as the number of processes

increases, the overall time for the compilation of the kernel decreases since a better utilization of

the CPU is achieved as one compilation uses the CPU while another sleeps on the completion of

an 10 request. If the percentage of time that each child process sleeps is great enough, there is lit-

tle contention for the CPU. However, since each of the compilations requires a relatively heavy

amount of processing the optimal number of processes running in parallel on one machine is low.

Processes User Time System Time Elapsed Time CPU Utilization

1 622.95 288.10 1161.00 78.00

2 628.60 292.55 1042.00 88.00

3 635.05 296.75 987.00 94.00

4 636.05 298.50 995.50 93.00

5 636.10 302.10 1006.00 93.00

6 645.95 317.30 1031.00 93.00

7 646.80 313.35 1014.50 94.00

8 649.80 323.00 1040.50 93.00

16 658.13 327.28 1056.25 93.00

Table 6.1 - Parallel Make with I Processor

The table shows that the parallel make gets a slight speedup as the number of processes

increases to 3 and a slowdown with more than 3 processes. In fact, with around 17 processes the

resources of the single machine, e.g. the number of slots in the system's process table, are

exhausted and the parallel make fails. As would be expected, increasing the number of processes
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causes increased context switching between the processes that run concurrently. This in turn

increases the amount the parallel make spends in system mode. A steady increase in the time

spent in user mode was also observed. This is largely a result of the way in which UNIX times a

process: one clock tick of time is added to its user mode time if it is runrinig in user mode when

the clock interrupt occurs. This does not mean that the process was running during the entire

time slice attributed to it: if a system interrupt occurs during the previous time slice, the scheduler

is called and may choose to let a new process run. That has two effects: ch-arging the time spent

by the preempted process and the interrupt handling routine against the user time of the process

that is running at the end of the time slice and letting the pre-empted process get a bit of "free"

processing time. On the whole, the amount of time unjustly charged against processes evens out,

but the interrupt handler's time ends up being charged, at least in part, as the user time of some

process.

Multiple Macline Compilation

The next benchmark measures the speedup gained by lctting the processes freely migrate

between two MOS nodes. Table 6.2 shows the results:

Processes User Time System Time Elapsed Time CPU Utilization

1 625.20 287.35 1146.00 79.00

2 631.00 343.90 969.50 100.00

3 634.00 439.90 851.50 125.50

4 632.40 463.85 813.00 134.50

5 636.35 484.60 766.50 146.00

6 633.75 491.60 741.50 151.50

7 634.70 516.20 739.00 155.50
8 636.80 504.25 739.50 153.50

; 6 636.90 512.30 758.00 151.00

Table 6.2 - Parallel Make with 2 Machines

With two processes running in parallel, the best speedup relative to the one machine case

hupl;c. ,J with 9 processes ruLring in parallel, a speedup of 1.57. Another irteresting measure of

the parliclism aohieved is he CPU utilization which shows the utilization relative to a one pro-

ccsjor. ITI thc two machine case, the utilization reaches around 156% of a single processor.
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The measured speedup with three and four machines is only slightly better than the two

machine case, due to the high rate of 10 that is done with the disk of the host machine of the

parallel make which must handle the processing of the remote 10 requests from all of the other

machines. Table 6.3 shows the results for the 4 machine case.

Processes User Time System Time Elapsed Time CPU Utilization

1 624.10 275.60 1213.00 73.50

2 631.05 339.50 940.50 103.00

3 633.40 474.75 828.50 133.00

4 637.95 503.20 758.00 150.00

5 642.00 537.65 732.50 161.00

6 638.05 541.05 697.50 168.50

7 638.45 543.90 686.00 172.00

8 641.35 549.55 667.00 178.00

16 645.55 556.40 698.00 172.00

Table 6.3 - Parallel Make with 4 Machines

Here the best case is with 8 processes running in parallel, only two compilations per node.

The speedup achieved over the 1 machine run was 1.48 while the speedup relative to the best 2

machine run is only 1.09. There are several reasons for the poor scalability of the parallel make.

Firstly, the amount of 10 that is processed by the host machine is an intrinsic bottleneck for a

parallel computation. The second reason for the poor increase in the 4 machine speedup is the

two serial phases of the parallel make itself: the startup phase which generates the dependency

tiee and the linking and loading phase. Table 6.4 shows the measured times with these two

phases.

Stage User Time System Time Elapsed Time

Startup 15.80 10.13 27.00

Linking 45.43 27.33 97.60

Total 61.23 37.46 124.60

Table 6.4 - Timing of the Serial Phases of Make

If the serial times are subtracted from the best time for the I machine case, the elapsed time for
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the parallel phase is 862.4 seconds. Similarly, the best time with the two and four machine runs

are 603.9 and 542.4 seconds respectively, which is a 1.59 speedup. When measured this way, the

4 machine speedup is around 40% of the optimal speedup of 4.0.

In order to improve the speedup of the four machine case even further, the C compiler was

changed to randomly choose one of the four machines as the site of the temporary files that it

creates. Table 6.5 shows the results of this run.

r Processes User Time System Time ElapsedTime CPU Utilization

2634.25 425.60 928.00 114.00

3 639.05 480.95 753.50 148.50

4 634.25 504.75 643.00 176.50

5 645.15 545.15 628.50 189.00

6 642.30 533.20 569.50 205.50

7 645.60 541.85 544.50 217.50

8 646.60 540.90 512.50 231.00
9 646.55 551.75 508.00 235.50

10 640.43 530.38 486.25 240.25

11 653.55 547.30 489.50 245.00

12 648.72 533.30 462.00 255.40

16 654.90 573.O 495.50 248.00

[ 32 663.28 583.38 489.25 254.50

64 663.20 585.30 488.75 255.00

it72 663.70 581.20 493.00 252.00

Table 6.5 - Make with Four Machines and Random Temporary Files

As the table shows, the best case measured took 462 seconds (without the serial phases,

337.4 seconds). This is a speedup of the parallel phase relative to a 1 machine case of 2.56 which

is 64% of the optimal and a speedup relative to the best case from the unmodified make program

of 1.61. A very slight improvement is achieved by distributing the source files as well across the

maclinos, but due to the artificial nature of the method, the results are not included in this report.

'TT- . r-suits for a run with a random distributioa of files across 5 MOS nodes is given in

rabl ,'". I'his produced a minimum run time of 415.75 seconds (291.15 seconds of parallel

comr . .t.,) m) with the speedup of the parallel phase being 2.96, 59% of the optimal. This is

sligIt!y less than with the four machine percentage due to the problematics of scaling up an 10
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bound application.

Processes User Time System Time Elapsed Time CPU Utilization

1 628.38 443.52 1355.00 78.75
2 643.50 501.58 977.25 117.00

4 644.53 524.28 647.00 180.00

8 651.40 555.88 495.25 243.25

16 660.30 574.28 432.25 285.25

32 664.88 585.05 420.25 297.25

40 666.33 593.95 418.75 300.50
50 660.00 575.42 415.75 296.75

'64 665.23 579.37 421.00 295.00

Table 6.6 - Make with Five Machines and Random Files

6.3. A Parallel Version of the Traveling Salesman Problem

The traveling salesman problem requires an extensive tree search of its problem space. The

implementation of the traveling salesman problem [12] that is measured in this section is basi-

cally a CPU bound job with some 10 operations. One master process forks the requested number

of children who then loop endlessly waiting for a message from the master indicating what part of

the problem space they should search. At the end of each stage, each of the children pass back

the two best paths that they find. The returned paths are sorted by the master process who keeps a

constant number of results best paths (r, determined by a parameter), and uses them as the base

paths for the next stage. The number of stages is equal to the number of cities (n) in the graph.

Since each of the children does a tree search of a fixed depth of four at each stage of the computa-

tion, the complexity of the problem is O(r n sup 5).

Table 6.7 shows an instance of the problem run with 12 cities and 100 results on a single

machine. Unlike the parallel make measured in the previous section, no speedup is achieved by

using a number of processes on one machine since the job is purely CPU bound and fhe processes

do not often give up the CPU willingly.
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Processes User Time System Time Elapsed Time CPU Utilization
1 60.9 3.7 65 99

2 63.8 5.0 70 98

3 67.6 4.4 74 97

4 73.0 8.0 91 89

5 1 73.3 8.0 109 74

Table 6.7 - One Node Traveling Salesman with 12 Cities and 100 Results

Table 6.8 shows the results when the same problem is run on an increasing number of

machines. Since the entire computation finishes in around one minute, the MOS load balancing

mechanism is slow to move processes away from the original machine. However, the mechanism

does migrate processes which chronically fork new processes, a heuristic which has the side

benefit of spreading the load quickly between available nodes when a larger number of processes

is used. All in all, this size of problem is not heavy enough to truly benefit from the distrihuted

nature of MOS and the best speedup obtained is 2.91 on all seven machines, 41% of the optimal

speedup.

Number of Machines Processes Elapsed Time CPU Utilization Speedup
1 1 65 99 1.0

2 2 44 168 1.48

4 6 42 219 1.55
7 7 35 288 1.86

Table 6.8 - Traveling Salesman with 12 Cities and 100 Results

Table 6.9, shows the effect of increasing the number of cities to 14 and leaving the number

of results passed between stages at 100. The predicted increase in complexity is 2.15 times. The

effect on the one process case shows the elapsed time was 2.28 times the elapsed time for the pre-

vious case, a close fit to the complexity predicted above (95%). In this case, the subtasks have

,1.PZ time to run on the available nodes after migration -and the corresponding speedup obtained

i 3.G8, 44% of the optimum.
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Number of Machines Processes Elapsed Time CPU Utilization Speedup

1 1 148 99 1.0

2 2 89 186 1.66

4 4 58 300 2.55

7 7 48 393 3.08

Table 6.9 - Traveling Salesman with 14 Cities and 100 Results

Table 6.10, shows a run with 24 cities and 200 results, a 64 fold increase in expected run

time. With this example, each subtask runs for a long enough time to dwarf the startup time

required and the time required to pass messages. The speedup measured with all seven machines

is 6.19, 88% of the optimum speedup possible.

Number of Machines Processes Elapsed Time CPU Utilization Speedup

1 1 5462 100 1.0

2 6 2863 197 1.91
4 4 1447 389 3.77

7 7 882 647 6.19

Table 6.10 - Traveling Salesman with 24 Cities and 200 Results

The utilization of the processors involved also reached 92 percent of the available power. The

eight percent of the combined CPU power that was not utilized can be reduced by changing the

implementation in a way that reduces the time each subtask sleeps while awaiting a job assign-

ment from the master process, for example by sending each task all of its jobs in a single message

at the beginning of a computational round. Another way to reduce the unused CPU time is to

manually place the subtasks at a certain node instead of letting the MOS mechanism distribute

them. With foreknowledge of the length of the computation required for each of the subtasks, the

initial quantum of processing required of a process before it becomes a candidate for migration

can be side-stepped allowing each subtask to immediately start processing on a different node.

6.4. Conclusions

While the parallel make does not scale up as well as other types of problems due to its 10

bound nature, the speedups gained with 4 and 5 machine configurations of the MOS system is
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quite impressive. A more innovative approach to file 10, such as is suggested in 1231, could have

a considerable impact on the parallelization of this type of problem. As a side note, the average

tength of time required for processing of a subgoal was 20.34 seconds while 3 of the subgoals

required more than 65 seconds. Without dynamic process migration, thc large deviation from the

average could result in a much poorer speedup.

Tia:c troweling salesman problem is more suited to distributed computing than, the parallel

aiake, but still has some wasted CPU cycles during its message passing phase. While the algo-

rithin -an be -rnprovcd in a few ways, the speedups obtained are consistcntly good with an

increasillg number of nodes, provided the problem is of suflicient complexity. The percentage of

'"hc pimot .r ceJup decrease slightly as 'he number of mazhcnes increased from 2 to -, frci 96

percenjt dowa to 88 percent respectively. This coold be the sign of a problem with scaling up

sor.me d l .'-J mechanism of ,he system, but without a much larger number of processors on

which Lo ,n cits it is not possible to determine.



Chapter 7
Conclusions

The purpose of this work was to measure the performance of the MOS multicomputer sys-

tem and several distributed applications. One of the most significant outcomes of this work is

pointing out weak areas of the system and providing suggestions for improvement. The slow-

down factor associated with the remote kernel procedure call -s low when compared with the the

overhead of the Sprite system's remote calls, but there is room for improvement of the implemen-

tation. Firstly, remote calls which use the funnel mechanism should make use of "piggyback"

techniques to transmit the initial funnel data in the initial request packet (or the acknowledgement

packet returned by the remote node in the case of the remote read). This can reduce the overhead

of calls which involve small amounts of data considerably. Secondly, a further reduction can be

attained by copying the user data directly from user space to the network hardware buffers and

visa versa. In this case, the slowdown factor would be reduced for all of the calls which involve

data transfer.

There is room for improvement in the implementation of AT&T's System V.2 messages.

As seen in the measurements of the parallel make, distributing the 10 randomly between

machines brought a significant improvement in the speedup. Accordingly, disLributing this gen-

eral message passing system should improve the performance of jobs that do heavy message

passing. There are two problems with a "distributed" V.2 message mechanism: first of all, the

mechanism was designed for a single machine and its namespace is flat, that is each of the mes-

sage queues is described by a single integer. This would have to be changed to allow for

specification of the host machine when opening an existing message queue or creating a new one.

The second problem is one of garbage collection: since the mechanism is a general purpose one,

all of the message queues are left in memory after the demise of the creating process unless

specifically removed. Even for a single machine, this approach can rapidly consume the queues

if unruly processes do not take care to remove queues when finished. Since the kernel has no way

of knowing if a queue is going to be used in the futurc by a yet uncreated process, it can not per-

form garbage collection on the message queues. Distributing this mechanism only multiplies the

problem. One way of side-stepping this problem is to distribute only the "private" queues,

which are rcmoved after the death of the creating process. This type of mechanism is not as gen-

eral since it allows communication only between parent process and its descendents, but it would

be appropriate for many types of distributed applications.
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The implementation of the MOS Pronet driver, the lowest level of the networking, could be

improved significantly by removing the checksum done on packets if more sophisticated

h1z-dware could be used. Also, the size of the packet passed on the network could be increased

which in order to allow for the "piggybacking" mentioned above. The process migration

mechanism is tightly tied to the lower level mechanisms and would benefit from improvemcnts in

!heir implementations.

Another outcome of this work is the analysis of the suitability of various distributed appli-

cations to the MOS environment. Not surprisingly, significant speedups are obtained only by

processes which do little interprocess communication and are at least moderately long lived.

While this dcscribcs a large class of difficult problems, such as the Traveling Salesman, some

problcims, iikc sorting algorithms, involve too much 10 to obtain really impressive speedups on a

inui.i-machine configuration. While he current system did not allow testing of algorithms on

more than scv,;i nodes, the speedup associated with a the Traveling Salesman increased roughly

!inearly with the number of processors.

In concliusion, MOS was found to provide a reliable and relatively good performance at the

:evel of the kernel mechanisms and, in the best case, a linear speedup with an increasing number

of proccsors.
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